冥王生活

您现在的位置是:首页 > 科技生活 > 正文

科技生活

12位为什么4k(12位为什么用了两个星期就卡)

admin2022-12-16科技生活108

计算机中一个地址默认对应八位二进制数么?为何知道页内偏移量为12位,就能确定页面大小为4KB

二进制的111111111111(十二个1)转换成十进制是4095,即4K,如果页大小超过4K,那么用12位的偏移量就无法寻址超出4K的部分.

设有一个12位地址线和8位字长的存储器,问: (1)该存储器存储多少字节的信息?

一字节=8位字长

所以,总字节数=2^12×8÷8=2^12B=4KB,即存储4096字节,也就是4KB

什么是4K电视?

4K电视是屏幕的物理分辨率高的电视,它的分辨率是2K电视的4倍。

4K电视是屏幕的物理分辨率高的电视,4K电视且能接收、解码、显示相应分辨率视频信号的电视。

所谓4K电视指的是4096×2160像素分辨率的电视机,它的分辨率是2K投影机和高清电视的4倍,在此分辨率下,观众将可以看清画面中的每一个细节,每一个特写,得到一种身临其境的观感体验。

在经历多个版本的修订后,国际电信联盟,于2012年8月23日发布了超高清电视的国际标准:ITU-R Recommendation BT.2020。标准对超高清电视的分辨率、色彩空间、帧率、色彩编码等进行了规范 。

分辨率

在Rec.2020标准中,单个像素的宽高比为1:1,按照从左往右、从上至下的顺序进行像素寻址,超高清4K,水平清晰度3840,垂直清晰度2160,宽高比16:9,总约830万像素,超高清8K:水平清晰度7680,垂直清晰度4320,宽高比16:9,总约3320万像素。

帧率

在Rec.2020中,超高清电视只有逐行扫描Progressive,支持帧率120p、60p、59.94p、50p、30p、29.97p、25p、24p和23.976p,共9种帧率 。

数字量化

超高清电视量化水平有整型10-bit和整型12-bit两种,分别对应超高清4K和超高清8K 。10-bit:在10位二进制数中,额定黑位64,额定峰值940;当黑位溢出时,利用4~63进行延拓;峰值溢出时,利用941~1019进行延拓;0~3和1020~1023作为时间参考数。量化颜色数约10.7亿,12-bit:在12位二进制数中,额定黑位256,额定峰值3760;当黑位溢出时,利用16~255进行延拓;峰值溢出时,利用3761~4079进行延拓;0~15和4080~4095作为时间参考数。量化颜色数约687亿。

色彩空间

超高清电视对应的色域为:ITU-R BT.2020色域,又称Rec.2020,是显示设备中最大的色彩空间,覆盖了CIE 1931的75.8%,白点色温D65,高清电视色域的国际标准ITU-R BT.709的仅覆盖了Rec.2020的35.9%,所以超高清电视能比现行的高清电视显示更为丰富的色彩。

计算机的地址总线12位最大可寻址的内存大小为什么?

可寻址内存大小为2^12=4k。

内容可寻址存储器cam(coment-addressablememo-ry)以内容进行寻址的存储器,是一种特殊的存储阵列ram。它的主要工作机制就是将一个输入数据项与存储在cam中的所有数据项自动同时进行比较,判别该输入数据项与cam中存储的数据项是否相匹配,并输出该数据项对应的匹配信息。

内容可寻址存储器的特性

1、160 ns的匹配时间;  

2、设有屏蔽寄存器;  

3、通过芯片级联扩展深度;  

4、时钟频率最高为50 mhz;  

5、匹配字宽和输出结果位宽可自定义;  

6、在atm模式下可进行vpc(virtual path circuits)和vcc(virtual connection circuits)的同时匹配;  

7、端口主要分为控制和匹配端口;  

8、20ons的插入时间(在12个输入数据项队列未满的情况下);  

9、2ms的初始化时间(在设置了快速写入模式后);  

10、具有符合ieee标准1149.1的测试端口(jtag)。

分页地址结构为32位,其中0-11位为页内地址,即每页的大小为4KB。这个4KB是怎么算的?

英文名称为Virtual Address,简称VA,由于Windows程序时运行在386保护模式下,这样程序访问存储器所使用的逻辑地址称为虚拟地址,与实地址模式下的分段地址类似,虚拟地址也可以写为“段:偏移量”的形式,这里的段是指段选择器。 Windows 2000 使用基于分页机制的虚拟内存。每个进程有4GB的虚拟地址空间。基于分页机制,这4GB地址空间的一些部分被映射了物理内存,一些部分映射硬盘上的交换文件,一些部分什么也没有映射。程序中使用的都是4GB地址空间中的虚拟地址。而访问物理内存,需要使用物理地址。 下面我们看看什么是物理地址,什么是虚拟地址。 物理地址 (physical address): 放在寻址总线上的地址。放在寻址总线上,如果是读,电路根据这个地址每位的值就将相应地址的物理内存中的数据放到数据总线中传输。如果是写,电路根据这个地址每位的值就将相应地址的物理内存中放入数据总线上的内容。物理内存是以字节(8位)为单位编址的。 虚拟地址 (virtual address): 4G虚拟地址空间中的地址,程序中使用的都是虚拟地址。 如果CPU寄存器中的分页标志位被设置,那么执行内存操作的机器指令时,CPU会自动根据页目录和页表中的信息,把虚拟地址转换成物理地址,完成该指令。 比如 mov eax,004227b8h ,这是把地址004227b8h处的值赋给寄存器的汇编代码,004227b8这个地址就是虚拟址。CPU在执行这行代码时,发现寄存器中的分页标志位已经被设定,就自动完成虚拟地址到物理地址的转换,使用物理地址取出值,完成指令。对于Intel CPU 来说,分页标志位是寄存器CR0的第31位,为1表示使用分页,为0表示不使用分页。对于初始化之后的 Win2k 我们观察 CR0 ,发现第31位为1。表明Win2k是使用分页的。 使用了分页机制之后,4G的地址空间被分成了固定大小的页,每一页或者被映射到物理内存,或者被映射到硬盘上的交换文件中,或者没有映射任何东西。对于一般程序来说,4G的地址空间,只有一小部分映射了物理内存,大片大片的部分是没有映射任何东西。物理内存也被分页,来映射地址空间。对于32bit的Win2k,页的大小是4K字节。CPU用来把虚拟地址转换成物理地址的信息存放在叫做页目录和页表的结构里。 物理内存分页,一个物理页的大小为4K字节,第0个物理页从物理地址 0x00000000 处开始。由于页的大小为4KB,就是0x1000字节,所以第1页从物理地址 0x00001000 处开始。第2页从物理地址 0x00002000 处开始。可以看到由于页的大小是4KB,所以只需要32bit的地址中高20bit来寻址物理页。??? 页表,一个页表的大小为4K字节,放在一个物理页中。由1024个4字节的页表项组成。页表项的大小为4个字节(32bit),所以一个页表中有1024个页表项。页表中的每一项的内容(每项4个字节,32bit)高20bit用来放一个物理页的物理地址,低12bit放着一些标志。 页目录,一个页目录大小为4K字节,放在一个物理页中。由1024个4字节的页目录项组成。页目录项的大小为4个字节(32bit),所以一个页目录中有1024个页目录项。页目录中的每一项的内容(每项4个字节)高20bit用来放一个页表(页表放在一个物理页中)的物理地址,低12bit放着一些标志。 对于x86系统,页目录的物理地址放在CPU的CR3寄存器中。 CPU把虚拟地址转换成物理地址: 一个虚拟地址,大小4个字节(32bit),包含着找到物理地址的信息,分为3个部分: 第22位到第31位这10位(最高10位)是页目录中的索引, 第12位到第21位这10位是页表中的索引, 第0位到第11位这12位(低12位)是页内偏移。 对于一个要转换成物理地址的虚拟地址,CPU首先根据CR3中的值,找到页目录所在的物理页。然后根据虚拟地址的第22位到第31位这10位(最高的10bit)的值作为索引,找到相应的页目录项(PDE,page directory entry),页目录项中有这个虚拟地址所对应页表的物理地址。有了页表的物理地址,根据虚拟地址的第12位到第21位这10位的值作为索引,找到该页表中相应的页表项(PTE,page table entry),页表项中就有这个虚拟地址所对应物理页的物理地址。最后用虚拟地址的最低12位,也就是页内偏移,加上这个物理页的物理地址,就得到了该虚拟地址所对应的物理地址。 一个页目录有1024项,虚拟地址最高的10bit刚好可以索引1024项(2的10次方等于1024)。一个页表也有1024项,虚拟地址中间部分的10bit,刚好索引1024项。虚拟地址最低的12bit(2的12次方等于4096),作为页内偏移,刚好可以索引4KB,也就是一个物理页中的每个字节。 一个虚拟地址转换成物理地址的计算过程就是,处理器通过CR3找到当前页目录所在物理页,取虚拟地址的高10bit,然后把这10bit右移2bit(因为每个页目录项4个字节长,右移2bit相当于乘4)得到在该页中的地址,取出该地址处PDE(4个字节),就找到了该虚拟地址对应页表所在物理页,取虚拟地址第12位到第21位这10位,然后把这10bit右移2bit(因为每个页表项4个字节长,右移2bit相当于乘4)得到在该页中的地址,取出该地址处的PTE(4个字节),就找到了该虚拟地址对应物理页的地址,最后加上12bit的页内偏移得到了物理地址。 32bit的一个指针,可以寻址范围0x00000000-0xFFFFFFFF,4GB大小。也就是说一个32bit的指针可以寻址整个4GB地址空间的每一个字节。一个页表项负责4K的地址空间和物理内存的映射,一个页表1024项,也就是负责1024*4k=4M的地址空间的映射。一个页目录项,对应一个页表。一个页目录有1024项,也就对应着1024个页表,每个页表负责4M地址空间的映射。1024个页表负责1024*4M=4G的地址空间映射。一个进程有一个页目录。所以以页为单位,页目录和页表可以保证4G的地址空间中的每页和物理内存的映射。 每个进程都有自己的4G地址空间,从 0x00000000-0xFFFFFFFF 。通过每个进程自己的一套页目录和页表来实现。由于每个进程有自己的页目录和页表,所以每个进程的地址空间映射的物理内存是不一样的。两个进程的同一个虚拟地址处(如果都有物理内存映射)的值一般是不同的,因为他们往往对应不同的物理页。 4G地址空间中低2G,0x00000000-0x7FFFFFFF 是用户地址空间,4G地址空间中高2G, 0x80000000-0xFFFFFFFF 是系统地址空间。访问系统地址空间需要程序有ring0的权限。

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~