冥王生活

您现在的位置是:首页 > 科技生活 > 正文

科技生活

量子比特表示什么(一个量子比特大概等于多少电子比特)

admin2022-12-09科技生活113

你知道什么是量子吗?你知道什么是量子比特吗?

下面这句话,用的就全是专业概念:“基于量子叠加原理,一个量子比特可以同时处于0状态和1状态。”  说得明确一点就是,n个量子比特能存储2的n次方个比特的信息。奇妙的是,说这番话的不是民科,而是2016年以来大火的《宝宝的物理学》系列的作者克里斯·费利(Chris Ferrie)博士。这是他在《宝宝的量子信息学》里写的。他甚至还做了一个幽默的比喻:为了存储我最喜欢的一个分子(咖啡因)的信息,就需要地球上所有的手机! 

下面我们来从头解释起。

量子比特是什么? 

“比特”是计算机科学的基本概念,指的是一个体系有且仅有两个可能的状态,一般用“0”和“1”来表示。典型的例子,如硬币的正、反两个面或者开关的开、关两个状态。

但在量子力学中,有一条基本原理叫做“叠加原理”:如果两个状态是一个体系允许出现的状态,那么它们的任意线性叠加也是这个体系允许出现的状态。

现在问题来了,什么叫做“状态的线性叠加”?为了说清楚这一点,最方便的办法是用一种数学符号表示量子力学中的状态,就是在一头竖直一头尖的括号“|”中填一些表示状态特征的字符。这种符号是英国物理学家狄拉克发明的,称为“狄拉克符号”。  在量子信息中,经常把两个基本状态写成|0和|1。而|0和|1的线性叠加,就是a|0 + b|1,其中a和b是两个数,这样的状态称为“叠加态”。“线性”意味着用一个数乘以一个状态,“叠加”意味着两个状态相加,“线性叠加”就是把两个状态各自乘以一个数后再加起来。

现在,你明白“一个量子比特可以同时处于0状态和1状态”是什么意思了吧?它实际是说,量子比特可以处于|0和|1的叠加态。在一个时刻只会处于一个这样的确定的状态,既不是同时处于两个状态,也不是迅速在两个状态之间切换,也不是处于一个不确定的状态,更不是时空分裂。

不得不说,“同时处于0状态和1状态”是一个很容易令人糊涂的说法,好像禅宗的打机锋,远不如旋钮的比喻清楚易懂。更糟糕的是,读者可能会以为自己懂了,然后胡乱引申,造成更大的误解。在科普文章中,类似这样的令人似懂非懂的说法太多了,简直是遍地陷阱。

那么,为什么许多人言之凿凿地说,n个量子比特包含2的n次方个比特的信息?

要让这句话有意义,关键在于:把a|0 + b|1中的a和b这两个系数,当作两个比特的信息。这当然不是个严格的说法,因为把连续变量和离散变量混为一谈了。不过只要你姑且接受这种表述,你就可以明白,他们实际想说的是,“n个量子比特包含2的n次方个系数”,这就是正确的了。

这是怎么算出来的?

对于一个量子比特,n = 1,体系可以取的状态是a|0 + b|1,有a和b两个系数,系数的个数等于2的1次方。

对于两个量子比特,n = 2,体系可以取的状态是……是什么?

你也许会觉得,第一个量子比特的状态是a1|0 + b1|1,第一个量子比特的状态是a2|0 + b2|1,总共有4个系数。

错了!按照这种方式,当你有第三个量子比特时,只是增加a3|0 + b3|1的两个系数,总共有6个系数。广而言之,每个量子比特提供两个系数,所以n个量子比特包含的系数个数就是2n,怎么会是2的n次方呢?

真正的关键在于,对于多量子比特的体系,基本的描述方式并不是“第一个量子比特处于某个态,第二个量子比特处于某个态……”,而是“系统整体处于某个态”。

系统整体可以处于什么态呢?再次回忆叠加原理(敲黑板)!是的,叠加原理对多粒子体系也适用。 所以,我们要做的就是找出多粒子体系可以处于的基本状态,而这些多粒子基本状态是由单粒子的|0态和|1态组合而成的。下面我们来看这些基本状态。

首先,你可以让每一个量子比特都处于自己的|0态,这时系统整体的状态是所有这n个|0态的直接乘积(称为“直积”),可以简写为|000…,狄拉克符号里有n个“0”。

然后,在这个态的基础上,你可以让第一个量子比特变成自己的|1态,这时系统整体的状态是|100…,这也是一个直积态。

然后,在|000…的基础上,你可以让另一个量子比特(比如说第二个)变成自己的|1态,这时系统整体的状态是|010…。这样,你可以走遍所有的由n-1个“0”和1个“1”组成的字符串。

然后,在|000…的基础上,你可以让两个量子比特变成自己的|1态。这样,你可以走遍所有的由n-2个“0”和2个“1”组成的字符串。

这个过程继续下去,最终你会把所有的量子比特都变成自己的|1态,得到由n个“1”表示的|111…这个态。在这个过程中,你得到了所有的由“0”和“1”组成的长度为n的字符串。

这样的态总共有多少个呢?第一位有2种选择,第二位也有2种选择,一直到第n位都是2种选择。所有这些选择乘起来,就是2的n次方种选择。注意是相乘,而不是相加。在高中学过排列组合、二项式定理的同学们,肯定都看明白了吧?

机智如我,早已看穿了一切。

顺便说一下,这样的一个n粒子状态,有可能可以表示成n个单粒子状态的乘积,这时我们称它为“直积态”,但更常见的是不能表示成n个单粒子状态的乘积,这时我们称它为“纠缠态”。作为一个简单的例子,二粒子体系的(|00 + |11) / √2就是一个纠缠态。你可以试着证明一下,很容易的~

1量子比特是多少g

1G=1024M ,1M=1024KB,1KB=1024字节。

传统计算机使用0和1,量子计算机也是使用0跟1,但与之不同的是,其0与1可同时计算。古典系统中,一个比特在同一时间,不是0,就是1,但量子比特是0和1的量子叠加。这是量子计算机计算的特性。

物理特性:

量子计算机的物理结构是纠缠态原子自身的有序排列,量子比特在系统中表示状态记忆和纠缠态。量子计算是通过对具有量子算法的量子比特系统进行初始化而实现的,这里的初始化指的是把系统制备成纠缠态的一些先进的物理过程。

在两态的量子力学系统中量子比特用量子态来描述,这个系统在形式上与复数范围内的二维矢量空间相同。两态量子力学系统的例子是单光子的偏振,这里的两个状态分别是垂直偏振光和水平偏振光。

量子比特是什么?对物理学研究有什么影响?

我们将与科技谈话者讨论量子计算。

首先,量子计算机何以成为量子计算机。我将让科技谈话者来解释一下。

科技谈话者:它指的是量子……咄!好吧,但说真的,普通计算机使用储存在晶体管中的二进制数字(1和0)处理数据。它使用二进制数字来执行指令、储存图片、播放音乐、查看Facebook,做几乎所有你能想到的事情。量子计算机以量子比特或者说量子二进制数字的形式储存数据。量子比特很难捉摸,因为既可能是0,1,也有可能二者皆有。

量子计算让编程和数学领域出现一些振奋人心的事情成为可能。

量子二进制数字或者量子比特之所以表现为这样是因为一种叫作态叠加的原理。态叠加原理是量子计算背后的核心法则。我们在讨论态叠加时,通常会用到电子这一例子。电子具有自旋的特性,旋转的方向既可能是向上也可能向下。然而,根据量子力学理论,电子不仅能向上或向下旋转,它还具有一种综合两种状态而任意线性组合的旋转形式。线性组合意味着它可以同时具有向上旋转的状态也有向下旋转的状态。

奇怪之处在于,当一个观察员看到电子向上旋转的时候,另一个观察员可能会看到电子向下旋转。即使两个观察员精确地在同一时刻观察电子,这些观测差异仍然存在——这一事实意味着在量子力学中,我们认为电子同时具有这些旋转形式。我们将其称之为属性态叠加。

这对量子力学意义重大,因为正如科技谈话者所言,普通计算机使用一个位(1或0)来处理数据,所以一台8位计算机能在任何给定的时间处理1至256种状态中的任意一种。而利用态叠加状态的量子计算机则可以同时处理256种状态。这意味着,对某种(尽管不是全部)算法而言,量子计算机将带来计算能力的巨大飞跃。

那么量子比特究竟是什么呢?

正如一台常规计算机通过各种各样的方式(例如在硬盘、DVD和内存芯片上存储二进制数字的不同方式)代表一个常规的位一样,一个量子比特也能通过不同的东西来代表。如我所提到的,电子、光子和原子核都是很好的量子比特。事实上,任何具有量子特性的物体都可以用作量子比特。这里你能看到一个完整的清单。

量子纠缠告诉我们,两个粒子互相联接时,如果你弄清其中一个粒子的状态,你马上就能知道另一个粒子的状态。

科技谈话者:量子计算机通过态叠加的分解进行一些有趣的计算,这些计算普通计算机很难完成。例如,普通计算机很难找出质数的因子,所以几乎所有的密码术都会用到某种形式的大型质数或者单向函数,以此保护数据安全。

目前,因为每个量子比特能同时以所有状态存在,你可能好奇这些东西是如何储存信息的。为了实现储存,我们需要利用量子理论的另一个特性——量子纠缠。

量子纠缠告诉我们,两个粒子互相联接时,如果你测量其中一个粒子的状态,你立刻也能知道另一个粒子的状态,不管这两个粒子距离多么遥远。这在量子计算中有几个影响,其中最重要的影响之一就是它能让我们把量子计算机的量子比特缠绕起来,这样,一旦我们知道其中一个的状态,我们就能知道其他所有量子的状态。

因此遵循着这两条法则,量子计算机能够迅速地执行计算——极其迅速得计算那些过去被认为是不可能在合理的时间内解决的难题。例如,一台运用恰当算法的量子计算机可以相对轻易地破解牢固的密码。因此我们离用量子计算机取代智能手机还有多远?

科技谈话者:现在还不必担心。目前为止,我们的量子计算机还处于用几个量子比特进行简单计算的阶段。然而,在将来,这将给科技带来一些十分有趣的改变!

总结

所以这就是量子计算。

如果你感到有些疑惑,别担心。即使是在量子计算领域的重要科学家也发现,它无法仅靠直觉来领悟。尼尔斯·玻尔说:“那些第一次听到量子理论而没被震惊的人,可能还没能理解它。”理查德·费曼说,“我可以很有把握地说还没有人能理解量子力学。”

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~