冥王生活

您现在的位置是:首页 > 科技生活 > 正文

科技生活

淘宝用什么数据挖掘算法(数据挖掘和算法的区别)

admin2022-12-14科技生活82

在淘宝里分析一群人里面对某一种产品感兴趣的有哪些人要用到哪些数据挖掘知识等 如何实现

1.可以按照感兴趣的程度分成几类,通过回归分析法得到用户对此商品的感兴趣程度的公式。

2 可以对这些人进行聚类分析,看看这些人可以分成几类,每类都有什么特点,根据人群的特点有针对性的进行宣传,以促进产品的销售。

淘宝网店如何运用大数据营销

淘宝网店运用大数据营销,主要还是要通过大数据去分析,顾客的喜欢商品,以及顾客对于价格的接受能力,还有就是顾客的人群分部,这样就可以运用好大数据进行营销的。

大数据挖掘常用的方法有哪些

1.基于历史的MBR分析

基于历史(Memory-Based Reasoning)的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。

MBR中有两个主要的要素,分别为距离函数(distance function)与结合函数(combination function)。距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。

MBR的优点是它容许各种型态的数据,这些数据不需服从某些假设。另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够 的历史数据方能做良好的预测。此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。

2.购物篮分析

购物篮分析(Market Basket Analysis)最主要的目的在于找出什么样的东西应该放在一起?商业上的应用在藉由顾客的购买行为来了解是什么样的顾客以及这些顾客为什么买这些产品, 找出相关的联想(association)规则,企业藉由这些规则的挖掘获得利益与建立竞争优势。举例来说,零售店可藉由此分析改变置物架上的商品排列或是设计 吸引客户的商业套餐等等。

购物篮分析基本运作过程包含下列三点:

1. 选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。

2. 经由对共同发生矩阵(co-occurrence matrix)的探讨挖掘出联想规则。

3. 克服实际上的限制:所选择的品项愈多,计算所耗费的资源与时间愈久(呈现指数递增),此时必须运用一些技术以降低资源与时间的损耗。

购物篮分析技术可以应用在下列问题上:针对信用卡购物,能够预测未来顾客可能购买什么。对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。保险业能藉由购物篮分析侦测出可能不寻常的投保组合并作预防。对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。

3.决策树

决策树(Decision Trees)在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元 树、三元树或混和的决策树型态。

4.遗传算法

遗传算法(Genetic Algorithm)学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitness function)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。基因算法在群集 (cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。

5.聚类分析

聚类分析(Cluster Detection)这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。

6.连接分析

连接分析(Link Analysis)是以数学中之图形理论(graph theory)为基础,藉由记录之间的关系发展出一个模式,它是以关系为主体,由人与人、物与物或是人与物的关系发展出相当多的应用。例如电信服务业可藉连结分析收集到顾客使用电话的时间与频率,进而推断顾客使用偏好为何,提出有利于公司的方案。除了电信业之外,愈来愈多的营销业者亦利用连结分析做有利于 企业的研究。

7.OLAP分析

严格说起来,OLAP(On-Line Analytic Processing;OLAP)分析并不算特别的一个数据挖掘技术,但是透过在线分析处理工具,使用者能更清楚的了解数据所隐藏的潜在意涵。如同一些视觉处理技术一般,透过图表或图形等方式显现,对一般人而言,感觉会更友善。这样的工具亦能辅助将数据转变成信息的目标。

8.神经网络

神经网络是以重复学习的方法,将一串例子交与学习,使其归纳出一足以区分的样式。若面对新的例证,神经网络即可根据其过去学习的成果归纳后,推导出新的结果,乃属于机器学习的一种。数据挖掘的相关问题也可采类神经学习的方式,其学习效果十分正确并可做预测功能。

9.判别分析

当所遭遇问题它的因变量为定性(categorical),而自变量(预测变量)为定量(metric)时,判别分析为一非常适当之技术,通常应用在解决分类的问题上面。若因变量由两个群体所构成,称之为双群体 —判别分析 (Two-Group Discriminant Analysis);若由多个群体构成,则称之为多元判别分析(Multiple Discriminant Analysis;MDA)。

a. 找出预测变量的线性组合,使组间变异相对于组内变异的比值为最大,而每一个线性组合与先前已经获得的线性组合均不相关。

b. 检定各组的重心是否有差异。

c. 找出哪些预测变量具有最大的区别能力。

d. 根据新受试者的预测变量数值,将该受试者指派到某一群体。

10.逻辑回归分析

当判别分析中群体不符合正态分布假设时,逻辑回归分析是一个很好的替代方法。逻辑回归分析并非预测事件(event)是否发生,而是预测该事件的机率。它将自变量与因变量的关系假定是S行的形状,当自变量很小时,机率值接近为零;当自变量值慢慢增加时,机率值沿着曲线增加,增加到一定程度时,曲线协 率开始减小,故机率值介于0与1之间。

云计算的海量数据挖掘工作是怎样实现的?

云计算属于新兴技术领域,群英云计算转一篇关于问题的学术报告吧。对您应该有所帮助。

1 引言

目前,人们正处于一个“无处不网、无时不网,人人上网、时时在线”的时代,图灵奖获得者吉姆·格雷(Jim Gray)认为,网络环境下每18个月产生的数据量等于过去几千年的数据量之和。目前互联网的数据具有海量增长、用户广泛、动态变化等特征。2010年,QQ同时在线的用户超过1亿人,淘宝一年交易次数比上年增长150%,视频服务Animoto在3天内通过Amazon将其服务能力迅速扩展至75万用户。

数据挖掘能够发现隐含在大规模数据中的知识,提高信息服务的质量。如伊朗事件中twitter快速传播假消息的识别、Amazon和淘宝网中商品关联关系分析,以及优酷网中视频个性化推荐等。海量数据挖掘在国家安全、国民经济和现代服务业中具有广泛应用,有助于提升网络环境下信息服务的质量,实现以人为本的信息服务。

从数据挖掘技术的发展历史看,随着互联网的蓬勃发展,数据的规模越来越大,从KB级发展到TB甚至PB级海量数据;数据挖掘的对象也变得越来越复杂,从数据库、到多媒体数据和复杂社会网络;数据挖掘的需求也从分类、聚类和关联到复杂的演化和预测分析;挖掘过程中的交互方式从单机的人机交互发展到现在社会网络群体的交互。这种发展给数据挖掘带来了巨大的挑战:对于网络环境下产生的TB级和PB级的复杂数据,需要有高效的海量数据挖掘算法;网络环境下大众的广泛参与,需要在数据挖掘算法中能够融入群体智慧;同时社会网络的迅速发展使得信息服务的个性化成为必然,要求能够满足即时组合的个性化挖掘服务。

云计算是一种基于互联网的、大众参与的计算模式,其计算资源(包括计算能力、存储能力、交互能力等)是动态、可伸缩、被虚拟化的,并以服务的方式提供 [1] 。具体表现在:云计算的动态和可伸缩的计算能力为高效海量数据挖掘带来可能性;云计算环境下大众参与的群体智能为研究集群体智慧的新的数据挖掘方法研究提供了环境;云计算的服务化特征使面向大众的数据挖掘成为可能。同时,云计算发展也离不开数据挖掘的支持,以搜索为例,基于云计算的搜索包括网页存储、搜索处理和前端交互三大部分。数据挖掘在这几部分中都有广泛应用,例如网页存储中网页去重、搜索处理中网页排序和前端交互中的查询建议,其中每部分都需要数据挖掘技术的支持。

因此,云计算为海量和复杂数据对象的数据挖掘提供了基础设施,为网络环境下面向大众的数据挖掘服务带来了机遇,同时也为数据挖掘研究提出了新的挑战性课题。

下面将对并行编程模型、基于并行编程模型高效海量数据挖掘算法,以及基于云计算的海量数据挖掘服务相关研究进行综述。

2 并行编程模型相关方法

为了使用户能够通过简单的开发来方便地达到并行计算的效果,研究人员提出了一系列的并行计算模型。并行计算模型在用户需求和底层的硬件系统之间搭建桥梁使得并行算法的表示变得更加直观,对大规模数据的处理更加便捷。根据用户使用硬件环境的不同,并行编程模型又可以分为在多核机器、GPU计算、大型计算机以及计算机集群上的多种类型。目前比较常用的并行编程接口和模型包括:

pThread接口[2]。pThread是在类Unix系统上进行多线程编程的通用API,为用户提供了一系列对线程进行创建、管理和各类操作的函数,使用户能够方便地编写多线程程序。

MPI模型[3]。MPI的全称为消息传递接口(Message Passing Interface),它为用户提供了一系列的接口,使用户利用消息传递的方式来建立进程间的通信机制,从而方便地对各种算法进行并行实现。

MapReduce模型[4]。MapReduce模型是由谷歌公司提出的并行编程框架,它首先为用户提供分布式的文件系统,使用户能方便地处理大规模数据;然后将所有的程序运算抽象为Map和Reduce两个基本操作,在Map阶段模型将问题分解为更小规模的问题,并在集群的不同节点上执行,在Reduce阶段将结果归并汇总。MapReduce是一个简单,但是非常有效的并行编程模型。

Pregel模型[5]。Pregel同样是由谷歌公司提出的专门针对图算法的编程模型,能够为大规模数据的图算法提供并行支持。一个典型的Pregel计算过程将在图上进行一系列的超级步骤(SuperSteps),在每个超级步骤中,所有顶点的计算都并行地执行用户定义的同一个函数,并通过一个“投票”机制来决定程序是否停止。

CUDA模型①。CUDA是由NVIDIA公司提出的一个基于GPU的并行计算模型。由于GPU在设计需求上与普通CPU不同,GPU通常被设计为能较慢地执行许多并发的线程,而不是较快的连续执行多个线程,这使得GPU在并行计算上有先天的优势。CUDA为用户提供了利用GPU计算的各种接口,使程序员能够像在普通电脑上进行CPU编程那样进行GPU程序的编写。

此外还有OpenMP、PVM、OpenCL等各种并行编程模型和方法。这些并行编程和方法一般都提供了主流编程语言的实现,从而使得用户能根据自身编程习惯来选用。

另一方面,随着云计算的不断推广,还出现了各种商用的并行计算/云计算平台,为用户提供并行计算服务。这其中比较著名的包括微软的Azure平台、Amazon公司的EC2平台、IBM公司的蓝云平台、谷歌公司的Google App Engine等。各大IT公司也纷纷开发自己的并行计算模型/框架作为自身技术服务的基本平台,这使得并行计算技术得到了更加快速的发展。

3 基于并行编程模型高效海量数据挖掘算法研究

为了实现海量数据上的数据挖掘,大量分布式并行数据挖掘算法被提出。Bhaduri et al[6]整理了一个十分详尽的并行数据挖掘算法文献目录,包含了关联规则学习、分类、聚类、流数据挖掘四大类分布式数据挖掘算法,同时还包括分布式系统、隐私保护等相关的研究工作。

MapReduce并行编程模型具有强大的处理大规模数据的能力,因而是海量数据挖掘的理想编程平台。数据挖掘算法通常需要遍历训练数据获得相关的统计信息,用于求解或优化模型参数。在大规模数据上进行频繁的数据访问需要耗费大量运算时间。为了提高算法效率,斯坦福大学Chu et al[7]提出了一种适用于大量机器学习算法的通用并行编程方法。通过对经典的机器学习算法进行分析可以发现,算法学习过程中的运算都能转化为若干在训练数据集上的求和操作;求和操作可以独立地在不同数据子集上进行,因此很容易在MapReduce编程平台上实现并行化执行。将大规模的数据集分割为若干子集分配给多个Mapper节点,在Mapper节点上分别执行各种求和操作得到中间结果,最后通过Reduce节点将求和结果合并,实现学习算法的并行执行。在该框架下,Chu et al实现了十种经典的数据挖掘算法,包括线性回归、朴素贝叶斯、神经网络、主成分分析和支持向量机等,相关成果在NIPS 2006会议上发表。

Ranger et al[8]提出了一个基于MapReduce的应用程序编程接口Phoenix,支持多核和多处理器系统环境下的并行程序设计。Phoenix能够进行缓存管理、错误恢复和并发管理。他们使用Phoenix实现了K-Means、主成分分析和线性回归三种数据挖掘算法。

Gillick et al[9]对单程学习(Single-pass)、迭代学习(Iterative Learning)和基于查询的学习(Query-based Learning)三类机器学习算法在MapReduce框架下的性能分别做了评测。他们对并行学习算法涉及到的如何在计算节点之间的共享数据、如何处理分布式存储数据等问题进行了研究。

Mahout①是APS(Apache Software Foundation)旗下的一个开源数据挖掘项目,通过使用Apache Hadoop库,可以实现大规模数据上的并行数据挖掘,包括分类、聚类、频繁模式挖掘、回归、降维等算法,目前已经发布了四个版本。

4 基于云计算的海量数据挖掘服务研究

云计算除了给用户提供通用的并行编程模型和大规模数据处理能力之外,另一个重要的特点是为用户提供开放的计算服务平台。在数据挖掘方向,现在也有一系列的系统被开发出来,面向公众提供数据挖掘服务云计算平台。

Talia et al[10]提出可以从四个层次提供云计算数据挖掘服务:底层为组成数据挖掘算法的基本步骤;第二层为单独的数据挖掘服务,例如分类、聚类等;第三层为分布式的数据挖掘模式,例如并行分类、聚合式机器学习等;第四层为之前三层元素构成的完整的数据挖掘应用。在此设计基础上,他们设计了基于云计算的数据挖掘开放服务框架,并开发了一系列的数据挖掘服务系统,例如Weka4WS、Knowledge Grid、Mobile Data Mining Services、Mining@home等,用户可以利用图形界面定义自己的数据挖掘工作流,然后在平台上执行。

PDMiner[11]是由中国科学院计算技术研究所开发的基于Hadoop的并行分布式数据挖掘平台,该系统现在已经用于中国移动通信企业TB级实际数据的挖掘。PDMiner提供了一系列并行挖掘算法和ETL操作组件,开发的ETL算法绝大多数达到了线性加速比,同时具有很好的容错性。PDMiner的开放式架构可以使用户将算法组件经过简单配置方便地封装加载到系统中。

此外,商业智能领域的各大公司也提供面向企业的大规模数据挖掘服务,例如微策略、IBM、Oracle等公司都拥有自己的基于云计算的数据挖掘服务平台。

5 总结和展望

通过云计算的海量数据存储和分布计算,为云计算环境下的海量数据挖掘提供了新方法和手段,有效解决了海量数据挖掘的分布存储和高效计算问题。开展基于云计算特点的数据挖掘方法的研究,可以为更多、更复杂的海量数据挖掘问题提供新的理论与支撑工具。而作为传统数据挖掘向云计算的延伸和丰富,基于云计算的海量数据挖掘将推动互联网先进技术成果服务于大众,是促进信息资源的深度分享和可持续利用的新方法、新途径。

常见的数据挖掘方法有哪些

数据挖掘的常用方法有:

神经网络方法

神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。

遗传算法

遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。

决策树方法

决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。

粗集方法

粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。

覆盖正例排斥反例方法

它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。

统计分析方法

在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。

模糊集方法

即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~