冥王生活

您现在的位置是:首页 > 科技生活 > 正文

科技生活

引力能扭曲什么(引力 弯曲)

admin2022-12-15科技生活97

为什么引力会使空间扭曲?

引力会导致空间扭曲,其实这并不是最根本的原因,最根本上来说是一个物体的质量对空间造成了压迫,空间受到压迫之后产生了重力或者说引力,然后才会造成一种空间的弯曲,这是有顺序的。

我们可以做一个比喻,一个星球对宇宙这个大的环境所造成的压迫,就相当于我们把一个铅球放在了蹦床上面,这个铅球的质量越大,这个蹦床的凹陷程度越深,同时它反弹的力量也就越大,只不过这个铅球和蹦床形成了一种力的平衡,它反弹的那个力就是引力重力,然后铅球本身的重量就是这个星球的质量或者这个星系的质量。可能这个比喻在专业人士看来是不太恰当的,但是个人理解应该是没什么问题的。

一个物体所拥有的质量越大,它所造成的引力坍塌就越大,空间探索越是严重,我们在太阳系之中就能得到验证,太阳的引力很大,在太阳系之中是最大的,因为它的质量占到了整个太阳系的98.6%,太阳系所有的天体都要围绕太阳运转,它是整个太阳系的中心,然后地球本身也拥有一定的质量,也吸引了月球和一些小的天体,不算天体吧,就算是陨石之类的东西围绕地球旋转,还有我们所发出的人造卫星,它都是受到了地球本身引力的影响,这个引力就来源于地球自身质量对空间所造成的压迫。

空间扭曲到一定程度,据说是可以打开一个空间的通道的,这个空间通道目前来说我们只是有了个大胆的猜想,但是还没有人知道到底需要多大力才能打破这个引力的上限,因为空间探索就意味着它弯曲了,弯曲到一定程度,它自然就会裂出一个口子,这个口子可能就能够让我们通往另外一个空间,科学家在做一些实验,这些专业东西我们可能就不清楚了。

引力为为什么会使空间扭曲?

激光就是光,速度是每秒30万公里,而不是31万KM/秒 时间与空间看上去当然是不同的,这依赖于你是在地球上还 是在宇宙空间里。爱因斯坦的广义相对论将引力描述为时空几何 结构的扭曲。这种说法的一个推论,就是始终沿可能的最短路径 穿越时空的光线,在大质量物体附近会弯曲。这在1919年日食期 间观测掠过太阳附近的星光被太阳的质量所弯曲而得到证明。这 一观测使爱因斯坦的理论最终得到接受,并为他赢得了世界性的 声誉。 但按照基本力学原理,如果光线偏转,它会被加速。这是否 将使光速发生变化,动摇相对论的根本原则?在某种意义上是对 的:我们从地球上观察到的光速,在它从太阳附近经过时确实会 变化。然而相对论和光速不变原理不能被抛弃。 引力的恶作剧——眼见不为实 爱因斯坦认识到,引力是无法自由运动的观察者们经历的某 种幻象。想象从一堵墙上跳下。在自由落体的过程中,你不会感 动周围的引力作用,但任何在地面上瞧着你落下来的人,都会解 释说你的运动是引力的作用所致。同样的说法对空间站中的宇航 员也适用:他们被提及时总是说成时处在“零重力”环境里,但 从地球的表面往上看,我们会用引力吸引来解释他们绕地球的轨 道运动。所以当我们从地球上观察时,经过太阳附近的光线看上 去弯曲、加速了,但如果我们自由落体地落向太阳,光线看上去 会以恒速沿直线经过我们身边。对任何自由落体的观察者来说, 经过他的光线都以恒定速度运动。不过,它在掠过扭曲其附近时 空的大质量物体时,看上去会弯曲和加速。 相对论另一个奇怪的推论是,没有任何物体能加速到光速。 不和我们建造动力多么强劲的火箭飞船,它们也永远不能到达光 速。这是因为物体运动得越快,其动能越大,惯性也越大。爱因 斯坦在他的E=mc2公式中指出,能量和质量或者说惯性相关联。 因此一个物体的动能增加,它的惯性也增加,从而越来越难继续 加速。这是一个收益递减原理:你对一个物体做的功越多,它就 变得越重,加速的效果也越微弱。 把单一电子加速到光速,就需要无限的能量,粒子物理学家 们对这一限制深有感触。质子进入美国伊利诺伊州Batawia费米 实验室的Tevatron加速器时,它们的速度已经达到光速的99%。 加速器的最后阶段使质子的能量提高了100倍,但速度仅增加到 光速的99.99995%,与它们进入加速器的速度相比,提高不足1%。 不过,一直与相对论有冲突的量子理论看上去是允许物质以 大于光速的速度运动的。在20世纪20年代,量子论显示一个系统 相隔遥远的不同组成部分能够瞬时联系。例如,当一个高能光子 衰变成两个低能光子时,它们的状态(例如,是顺时针或逆时针 自旋)是不定的,直到对它们中间的某一个作出观察才确定下来。 另一个粒子看上去感知到它的同伴被进行了一次观测,结果是任 何对第二个粒子的测量总会得到与对第一个粒子的测量相一致的 结果。这样远距离的瞬时联系,看起来像是一个讯息以无限大的 速度在粒子之间传递了。它被爱因斯坦称为“幽灵式的超距作 用”,听起来难以置信,但却是真实的现象。 1993年,加利福尼亚大学伯克利分校的Raymond Chiao表明, 量子理论还允许另一种超光速旅行存在:量子隧穿。想象朝一堵 坚实的墙上踢一个足球,牛顿力学预言它会被弹会,但量子力学 预言它还有极小的可能出现在墙的另一面。考虑这种情况的一种 途径,是想象它能“借”到足够的能量穿越墙壁,并在到达另一 面之后立即将能量归还。这并不违反物理定律,因为最终能量、 动量和其它属性都得到了保存。德国物理学家维纳·海森堡的测 不准原理表明,在一个系统中,总有某些属性——在这一情况中 是能量——的值是不能确定的,因此量子物理学原理允许系统利 用这种不确定性,短时间借到一些额外的能量。在隧穿的情况中, 粒子从障碍物的一面消失又从另一面重现的需要几乎可以忽略不 计,障碍物可以任意的厚——不过随着厚度增加,粒子隧穿的几 率也就迅速地朝零的方向递减。 Chiao通过测量可见光光子通过特定过滤器的隧穿时间,证 明了隧穿“超光速”隧穿效应的存在。为此,他让这些光子与在 相似时间内穿过真空的光子进行比较。结果隧穿光子先到达探测 器,Chiao证明它们穿越过滤器的速度可能为光速的1.7倍。 1994年,维也纳技术大学的Ferenc Kraus表明,隧穿时间有 一个不依赖于障碍物厚度的上限,这表示光子隧穿障碍物的时间 没有上限。德国科隆大学的Gunter Nimtz也用微波实现了这种 “超光速”。他甚至把莫扎特第40号交响曲调制在信号上,以 4.7倍光速的速度将它传输通过12厘米厚的障碍物。

引力的本质是什么?为何引力能导致空间弯曲呢?

引力是自然界已知的四种基本力之一,而牛顿是最早发现万有引力的,后来相对论又对引力重新进行了定义。所有物质之间都存在着引力,从牛顿方程到爱因斯坦的相对论,我们对引力越来越越深入。

在牛顿的万有引力公式中,引力和两个物体之间的距离的平方成反比,到了爱因斯坦这里就被提出了相对论,相对论与牛顿的观点是存在着本质的不同,相对论中引力的本质是时空的弯曲。

牛顿的万有引力

牛顿是人类有史以来最伟大的物理学家之一,同时也是最伟大的数学家之一,而且还是经典物理学的奠基人。相传牛顿是在睡觉的时候被苹果砸到,从而思考为什么苹果要往下面掉落而不是往上走?就这样万有引力第一次被发现,但限于当时的时代发展,牛顿认为万有引力适用于任何物体,而且引力大小只与物体的质量和距离有关。

事实上万有引力定律只适用于宏观低速运动的物体,在强大的引力场周围万有引力就会失效,比如在黑洞周围的强引力场下万有引力就是无效的;物体在接近光速运动时万有引力也是无效的。现在万有引力依然广泛应用于日常生活中,就像火星车和月球车的着陆还是需要万有引力的。

爱因斯坦的相对论

爱因斯坦最伟大的成就就是相对论的提出,而广义相对论与万有引力最突出的区别就是用时空弯曲去解释引力的本质,现在相对论已经成为现代物理的两大基石之一。

在广义相对论中,引力波不是一种力,引力的本质就是时空弯曲。并且还认为物质可以决定时空,引力可以使光线弯曲。在宇宙中,在大质量天体附近空间就会发生扭曲,这样就造成了光线沿弯曲的时空传播。

黑洞周围光线的弯曲

黑洞是一个超大质量的天体,依靠强大的引力来“吞噬”周围的物体。目前黑洞是发现的引力最大的天体,实际上“吞噬”应该是叫做扭曲。

由于广义相对论中,空间弯曲才是引力的本质。光在真空中传播,由于空间的弯曲,光线也会弯曲。当光进入黑洞的弯曲空间中,将无法从弯曲空间中逃脱出来,这样就造成了光被黑洞吸引住了。当天体的引力达到极限时就可以对空间进行扭曲。

爱因斯坦的电梯实验

当观测者在不透明的电梯里关上门,他是听不到看不到外面的情况的,只能看到电梯内部发生的情况。外面发生的观测者是都不会知道的,所以这就说明了宇宙中没有绝对的静止。

如果另一个观测者在同一个电梯里静止,来自地球的引力会以9.81米/平方秒的加速度把地球表面的所有物体向下拉。如果让一束光从外面穿过一个洞进入电梯的一侧,观察光在另一侧的墙壁发生的样子,结果会怎样是取决于观测者相对于外部光源的速度和加速度。后来爱因斯坦发现光经过引力场的时候是无法沿直线运动的。

结语

广义相对论是以定量描述引力、时空和物质的统一性的方程,在宇宙学研究中非常重要。地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。比如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。

引力为什么会扭曲速度?

引力作用于一切物质。

光运动速度很快,以现代科技水平认为:光的的速度达到了每秒30万公里,但仍然逃不出物质的范围,因此即使时光,也逃不出引力的作用。在这个前提下,在引力的作用下,连光都会被扭曲速度,更何况低于光速的其它物体。

引力能导致空间弯曲吗?其本质是什么?

牛顿的万有引力

牛顿是人类有史以来最伟大的物理学家之一,同时也是最伟大的数学家之一,而且还是经典物理学的奠基人。相传牛顿是在睡觉的时候被苹果砸到,从而思考为什么苹果要往下面掉落而不是往上走?就这样万有引力第一次被发现,但限于当时的时代发展,牛顿认为万有引力适用于任何物体,而且引力大小只与物体的质量和距离有关。

事实上万有引力定律只适用于宏观低速运动的物体,在强大的引力场周围万有引力就会失效,比如在黑洞周围的强引力场下万有引力就是无效的;物体在接近光速运动时万有引力也是无效的。现在万有引力依然广泛应用于日常生活中,就像火星车和月球车的着陆还是需要万有引力的。

爱因斯坦的相对论

爱因斯坦最伟大的成就就是相对论的提出,而广义相对论与万有引力最突出的区别就是用时空弯曲去解释引力的本质,现在相对论已经成为现代物理的两大基石之一。

在广义相对论中,引力波不是一种力,引力的本质就是时空弯曲。并且还认为物质可以决定时空,引力可以使光线弯曲。在宇宙中,在大质量天体附近空间就会发生扭曲,这样就造成了光线沿弯曲的时空传播。

黑洞周围光线的弯曲

黑洞是一个超大质量的天体,依靠强大的引力来“吞噬”周围的物体。目前黑洞是发现的引力最大的天体,实际上“吞噬”应该是叫做扭曲。

由于广义相对论中,空间弯曲才是引力的本质。光在真空中传播,由于空间的弯曲,光线也会弯曲。当光进入黑洞的弯曲空间中,将无法从弯曲空间中逃脱出来,这样就造成了光被黑洞吸引住了。当天体的引力达到极限时就可以对空间进行扭曲。

爱因斯坦的电梯实验

当观测者在不透明的电梯里关上门,他是听不到看不到外面的情况的,只能看到电梯内部发生的情况。外面发生的观测者是都不会知道的,所以这就说明了宇宙中没有绝对的静止。

如果另一个观测者在同一个电梯里静止,来自地球的引力会以9.81米/平方秒的加速度把地球表面的所有物体向下拉。如果让一束光从外面穿过一个洞进入电梯的一侧,观察光在另一侧的墙壁发生的样子,结果会怎样是取决于观测者相对于外部光源的速度和加速度。后来爱因斯坦发现光经过引力场的时候是无法沿直线运动的。

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~